Glutathione conjugation of trichloroethylene in human liver and kidney: kinetics and individual variation.
نویسندگان
چکیده
Isolated human hepatocytes exhibited time-, trichloroethylene (Tri) concentration-, and cell concentration-dependent formation of S-(1, 2-dichlorovinyl)glutathione (DCVG) in incubations in sealed flasks with 25 to 10,000 ppm Tri in the headspace, corresponding to 0.011 to 4.4 mM in hepatocytes. Maximal formation of DCVG (22.5 +/- 8.3 nmol/120 min per 10(6) cells) occurred with 500 ppm Tri. Time-, protein concentration-, and both Tri and GSH concentration-dependent formation of DCVG were observed in liver and kidney subcellular fractions. Two kinetically distinct systems were observed in both cytosol and microsomes from pooled liver samples, whereas only one system was observed in subcellular fractions from pooled kidney samples. Liver cytosol exhibited apparent Km values (microM Tri) of 333 and 22.7 and Vmax values (nmol DCVG formed/min per mg protein) of 8.77 and 4.27; liver microsomes exhibited apparent Km values of 250 and 29.4 and Vmax values of 3.10 and 1.42; kidney cytosol and microsomes exhibited apparent Km values of 26.3 and 167, respectively, and Vmax values of 0.81 and 6.29, respectively. DCVG formation in samples of liver cytosol and microsomes from 20 individual donors exhibited a 6.5-fold variation in microsomes but only a 2.4-fold variation in cytosol. In coincubations of pooled liver cytosol and microsomes, addition of an NADPH-regenerating system produced marked inhibition of DCVG formation, but addition of GSH had no effect on cytochrome P-450-catalyzed formation of chloral hydrate. These results indicate that both human kidney and liver have significant capacity to catalyze DCVG formation, indicating that the initial step of the GSH-dependent pathway is not limiting in the formation of nephrotoxic and nephrocarcinogenic metabolites.
منابع مشابه
Metabolism and toxicity of trichloroethylene and S-(1,2-dichlorovinyl)-L-cysteine in freshly isolated human proximal tubular cells.
Trichloroethylene (Tri) caused modest cytotoxicity in freshly isolated human proximal tubular (hPT) cells, as assessed by significant decreases in lactate dehydrogenase (LDH) activity after 1 h of exposure to 500 microM Tri. Oxidative metabolism of Tri by cytochrome P-450 to form chloral hydrate (CH) was only detectable in kidney microsomes from one patient out of four tested and was not detect...
متن کاملGlutathione conjugation of trichloroethylene in rats and mice: sex-, species-, and tissue-dependent differences.
Glutathione (GSH) conjugation of trichloroethylene (Tri) to form S-(1,2-dichlorovinyl)glutathione (DCVG) has been implicated in the nephrotoxicity and nephrocarcinogenicity of Tri. Marked sex- and species-dependent differences exist, however, in the susceptibility to Tri-induced renal toxicity, with the male rat being the most susceptible. The present study, therefore, focuses on potential diff...
متن کاملTrichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure.
Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in...
متن کاملMetabolism of trichloroethylene.
A major focus in the study of metabolism and disposition of trichloroethylene (TCE) is to identify metabolites that can be used reliably to assess flux through the various pathways of TCE metabolism and to identify those metabolites that are causally associated with toxic responses. Another important issue involves delineation of sex- and species-dependent differences in biotransformation pathw...
متن کاملIn silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.
In this study, we integrated our understanding of biochemistry, physiology, and metabolism of three commonly used organic solvents with computer simulation to present a new approach that we call "in silico" toxicology. Thus, we developed an interactive physiologically based pharmacokinetic (PBPK) model to predict the individual kinetics of trichloroethylene (TCE), perchloroethylene (PERC), and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 27 3 شماره
صفحات -
تاریخ انتشار 1999